- Main
- Computers - Computer Science
- Introduction to Deep Learning

Introduction to Deep Learning
Eugene Charniak
5.0 /
5.0
5 comments
Paperback
How much do you like this book?
What’s the quality of the file?
Download the book for quality assessment
What’s the quality of the downloaded files?
A project-based guide to the basics of deep learning.
This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach.
Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.
This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach.
Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.
Categories:
Content Type:
BooksYear:
2019
Edition:
1
Publisher:
The MIT Press
Language:
english
Pages:
192
ISBN 10:
0262039516
ISBN 13:
9780262039512
Series:
The MIT Press
File:
PDF, 16.33 MB
Your tags:
IPFS:
CID , CID Blake2b
english, 2019
Add to My Library
- Favorites
pdf, 16.33 MB
-
Download
-
Convert to
- Unlock conversion of files larger than 8 MBPremium
The file will be sent to your email address. It may take up to 1-5 minutes before you receive it.
The file will be sent to you via the Telegram messenger. It may take up to 1-5 minutes before you receive it.
Note: Make sure you have linked your account to Z-Library Telegram bot.
The file will be sent to your Kindle account. It may take up to 1–5 minutes before you receive it.
Please note: you need to verify every book you want to send to your Kindle. Check your mailbox for the verification email from Amazon Kindle.
Conversion to is in progress
Conversion to is failed
Premium benefits
- Send to eReaders
- Increased download limit
File converter
More search results
More benefits
Related Booklists















































































































































































































































