Subsystems of Second Order Arithmetic

Subsystems of Second Order Arithmetic

Stephen G. Simpson
5.0 / 0
How much do you like this book?
What’s the quality of the file?
Download the book for quality assessment
What’s the quality of the downloaded files?
Foundations of mathematics is the study of the most basic concepts and logical structure of mathematics, with an eye to the unity of human knowledge. Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second-order arithmetic. Additional results are presented in an appendix
Categories:
Content Type:
Books
Year:
2009
Edition:
2nd
Publisher:
Cambridge University Press
Language:
english
Pages:
462
ISBN 10:
052188439X
ISBN 13:
9780521884396
Series:
Perspectives in Logic
File:
PDF, 1.95 MB
IPFS:
CID , CID Blake2b
english, 2009
pdf, 1.95 MB
Conversion to is in progress
Conversion to is failed